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Classical Hodgkin’s Lymphoma (CHL) is the most common cancer diagnosed in adolescents. 
While many cancers have homogenous or less diverse tumor microenvironments, CHL tumors 
are unique in that comparatively they have a very diverse tumor microenvironment composed of 
around 1% tumor cells with the remainder as non-malignant cells (Figure 1). Previous studies 
have found these tumor cells are dependent on the tumor microenvironment for survival and to 
evolve their mechanisms of immune evasion (Trujillo et al. Cancer Research 32, 1057-1065, 
1972; Eisinger et al. Nature 233, 104-18, 1971); however, even though it is so common in 
adolescents the current standard treatment has a high associated morbidity rate. Therefore, the 
goal of this project is to use spatial transcriptomic data (Figure 2, 3) to enable the discovery of 
interactions within the microenvironment. If we can determine which nonmalignant cells enable 
the survival of tumor cells and their mechanisms of immune evasion, we can develop new 
therapies to target those cells directly with fewer adverse effects on the patient.
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Figure 2: Spatial transcriptomic data puck 
example

Figure 1: Tumor microenvironment: red 
tumor cells with non-malignant immune cells
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Figure 4: Neural network architecture overview
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Figure 5:  Model train accuracy: 0.983, test accuracy: 0.787

In conclusion, the Classical Hodgkin’s Lymphoma tumor 
microenvironment is very complex, but with these methods we can 
learn more about the cellular and gene interactions within it. The 
neural network was correctly able to classify the cell types from the 
spatial transcriptomic data given gene expression inputs. This is 
important because it provides us with an efficient and cheaper 
method of determining cell locations in tissues. The next steps with 
the neural network include the ability to correctly classify multiple 
cell types that may be recorded in one data point (Figure 8). 
Current methods to address this include increasing the complexity 
of the model architecture to predict multiple cell type outputs for a 
given gene expression input. Another approach includes using 
latent space methods to conduct a simultaneous factorization of 
both the single-cell reference data and spatial data. Furthermore, 
we will next investigate how the properties of cells change in 
tumors using tensor decomposition methods to learn more about 
cellular interactions in tumors. The ultimate main goal of this 
project is to predict how cell-specific gene expressions may change 
in different regions of the tissue, which will allow us to develop 
more targeted cancer therapies.

Bulk Genomics

Average gene 
expression of 
cells, spatial 
context lost

Single-Cell 
Genomics

Expression of 
each individual 

cell, spatial 
context lost

Spatial 
Transcriptomics

Near individual 
expression of 
cells, retain 

positional context

Figure 3: Overview comparison: spatial transcriptomic data allows for near 
individual gene expression of cells and retention of positional context

RESULTS - Neural network

RESULTS - Tumor Proximity Analysis

Figure 6, 7: Tumor proximity analysis approach overview;  analysis results: Spearman’s 
correlation (monotonic relationship): 0.99990, Spearman’s p-value: 1.43e-121

● Spatial data generated by biologists at the Broad Institute
● Created a feed forward network in tensorflow to predict cell types in spatial data from gene 

expression inputs, and trained on single-cell reference data generated by collaborators
● Tumor proximity analysis: categorized data based on distance to nearest tumor cell, 

recorded cell density in each region
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Figure 8:  
Representation of what 
spatial transcriptomic 

data actually looks like - 
some data points may 
contain more than one 

cell type
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